Search results for "dark matter theory"
showing 10 items of 23 documents
The virial theorem and the dark matter problem in hybrid metric-Palatini gravity
2012
Hybrid metric-Palatini gravity is a recently proposed theory, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini. The theory predicts the existence of a long-range scalar field, which passes the Solar System observational constraints, even if the scalar field is very light, and modifies the cosmological and galactic dynamics. Thus, the theory opens new possibilities to approach, in the same theoretical framework, the problems of both dark energy and dark matter. In this work, we consider the generalized virial theorem in the scalar-tensor representation of the hybrid metric-Palatini gravity. More specifically, taking into ac…
Primordial dark matter from curvature induced symmetry breaking
2020
We demonstrate that adiabatic dark matter can be generated by gravity induced symmetry breaking during inflation. We study a $Z_2$ symmetric scalar singlet that couples to other fields only through gravity and for which the symmetry is broken by the spacetime curvature during inflation when the non-minimal coupling $\xi$ is negative. We find that the symmetry breaking leads to the formation of adiabatic dark matter with the observed abundance for the singlet mass $m\sim{\rm MeV}$ and $|\xi|\sim 1$.
On baryogenesis from dark matter annihilation
2013
We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B – L. In addition, one of the models we propose yields some connection to neutrino masses.
Constraints on dark matter annihilation from CMB observations before Planck
2013
We compute the bounds on the dark matter (DM) annihilation cross section using the most recent Cosmic Microwave Background measurements from WMAP9, SPT'11 and ACT'10. We consider DM with mass in the MeV-TeV range annihilating 100% into either an e(+)e(-) or a mu(+)mu(-) pair. We consider a realistic energy deposition model, which includes the dependence on the redshift, DM mass and annihilation channel. We exclude the canonical thermal relic abundance cross section ( = 3 x 10(-26) cm(3)s(-1)) for DM masses below 30 GeV and 15 GeV for the e(+)e(-) and mu(+)mu(-) channels, respectively. A priori, DM annihilating in halos could also modify the reionization history of the Universe at late times…
Detecting the stimulated decay of axions at radio frequencies
2018
Assuming axion-like particles account for the entirety of the dark matter in the Universe, we study the possibility of detecting their decay into photons at radio frequencies. We discuss different astrophysical targets, such as dwarf spheroidal galaxies, the Galactic Center and halo, and galaxy clusters. The presence of an ambient radiation field leads to a stimulated enhancement of the decay rate; depending on the environment and the mass of the axion, the effect of stimulated emission may amplify the photon flux by serval orders of magnitude. For axion-photon couplings allowed by astrophysical and laboratory constraints(and possibly favored by stellar cooling), we find the signal to be wi…
Despicable dark relics: generated by gravity with unconstrained masses
2019
We demonstrate the existence of a generic, efficient and purely gravitational channel producing a significant abundance of dark relics during reheating after the end of inflation. The mechanism is present for any inert scalar with the non-minimal curvature coupling $\xi R\chi^2$ and the relic production is efficient for natural values $\xi = {\cal O}(1)$. The observed dark matter abundance can be reached for a broad range of relic masses extending from $m \sim 1 {\rm k eV}$ to $m \sim 10^{8} {\rm GeV}$, depending on the scale of inflation and the dark sector couplings. Frustratingly, such relics escape direct, indirect and collider searches since no non-gravitational couplings to visible ma…
Update on decaying and annihilating heavy dark matter with the 6-year IceCube HESE data
2019
In view of the IceCube's 6-year high-energy starting events (HESE) sample, we revisit the possibility that the updated data may be better explained by a combination of neutrino fluxes from dark matter decay and an isotropic astrophysical power-law than purely by the latter. We find that the combined two-component flux qualitatively improves the fit to the observed data over a purely astrophysical one, and discuss how these updated fits compare against a similar analysis done with the 4-year HESE data. We also update fits involving dark matter decay via multiple channels, without any contribution from the astrophysical flux. We find that a DM-only explanation is not excluded by neutrino data…
Late decaying 2-component dark matter scenario as an explanation of the AMS-02 positron excess
2016
The long standing anomaly in the positron flux as measured by the PAMELA and AMS-02 experiments could potentially be explained by dark matter (DM) annihilations. This scenario typically requires a large "boost factor" to be consistent with a thermal relic dark matter candidate produced via freeze-out. However, such an explanation is disfavored by constraints from CMB observations on energy deposition during the epoch of recombination. We discuss a scenario called late-decaying two-component dark matter (LD2DM), where the entire DM consists of two semi-degenerate species. Within this framework, the heavier species is produced as a thermal relic in the early universe and decays to the lighter…
Searching for sterile neutrino with X-ray intensity mapping
2019
The cosmological X-ray emission associated to the possible radiative decay of sterile neutrinos is composed by a collection of lines at different energies. For a given mass, each line corresponds to a given redshift. In this work, we cross correlate such line emission with catalogs of galaxies tracing the dark matter distribution at different redshifts. We derive observational prospects by correlating the X-ray sky that will be probed by the eROSITA and Athena missions with current and near future photometric and spectroscopic galaxy surveys. A relevant and unexplored fraction of the parameter space of sterile neutrinos can be probed by this technique.
Higgs in space!
2010
We consider the possibility that the Higgs can be produced in dark matter annihilations, appearing as a line in the spectrum of gamma rays at an energy determined by the masses of the WIMP and the Higgs itself. We argue that this phenomenon occurs generally in models in which the the dark sector has large couplings to the most massive states of the SM and provide a simple example inspired by the Randall-Sundrum vision of dark matter, whose 4d dual corresponds to electroweak symmetry-breaking by strong dynamics which respect global symmetries that guarantee a stable WIMP. The dark matter is a Dirac fermion that couples to a Z' acting as a portal to the Standard Model through its strong coupl…